Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 20(12): 2048-2057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012321

RESUMO

To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m-1, 900 T m-1s-1) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35-0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Cabeça , Neuroimagem , Razão Sinal-Ruído
2.
Magn Reson Med ; 90(6): 2592-2607, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37582214

RESUMO

PURPOSE: A 128-channel receive-only array for brain imaging at 7 T was simulated, designed, constructed, and tested within a high-performance head gradient designed for high-resolution functional imaging. METHODS: The coil used a tight-fitting helmet geometry populated with 128 loop elements and preamplifiers to fit into a 39 cm diameter space inside a built-in gradient. The signal-to-noise ratio (SNR) and parallel imaging performance (1/g) were measured in vivo and simulated using electromagnetic modeling. The histogram of 1/g factors was analyzed to assess the range of performance. The array's performance was compared to the industry-standard 32-channel receive array and a 64-channel research array. RESULTS: It was possible to construct the 128-channel array with body noise-dominated loops producing an average noise correlation of 5.4%. Measurements showed increased sensitivity compared with the 32-channel and 64-channel array through a combination of higher intrinsic SNR and g-factor improvements. For unaccelerated imaging, the 128-channel array showed SNR gains of 17.6% and 9.3% compared to the 32-channel and 64-channel array, respectively, at the center of the brain and 42% and 18% higher SNR in the peripheral brain regions including the cortex. For R = 5 accelerated imaging, these gains were 44.2% and 24.3% at the brain center and 86.7% and 48.7% in the cortex. The 1/g-factor histograms show both an improved mean and a tighter distribution by increasing the channel count, with both effects becoming more pronounced at higher accelerations. CONCLUSION: The experimental results confirm that increasing the channel count to 128 channels is beneficial for 7T brain imaging, both for increasing SNR in peripheral brain regions and for accelerated imaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Imagens de Fantasmas , Neuroimagem/métodos , Desenho de Equipamento
3.
Magn Reson Med ; 84(6): 3128-3145, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32557752

RESUMO

PURPOSE: Functional MRI (fMRI) at the mesoscale of cortical layers and columns requires both sensitivity and specificity, the latter of which can be compromised if the imaging method is affected by vascular artifacts, particularly cortical draining veins at the pial surface. Recent studies have shown that cerebral blood volume (CBV) imaging is more specific to the actual laminar locus of neural activity than BOLD imaging using standard gradient-echo EPI sequences. Gradient and spin-echo (GRASE) BOLD imaging has also shown greater specificity when compared with standard gradient-echo EPI BOLD. Here we directly compare CBV and BOLD contrasts in high-resolution imaging of the primary motor cortex for laminar functional MRI in four combinations of signal labeling, CBV using slice-selective slab-inversion vascular space occupancy (VASO) and BOLD, each with 3D gradient-echo EPI and zoomed 3D-GRASE image readouts. METHODS: Activations were measured using each sequence and contrast combination during a motor task. Activation profiles across cortical depth were measured to assess the sensitivity and specificity (pial bias) of each method. RESULTS: Both CBV imaging using gradient-echo 3D-EPI and BOLD imaging using 3D-GRASE show similar specificity and sensitivity and are therefore useful tools for mesoscopic functional MRI in the human cortex. The combination of GRASE and VASO did not demonstrate high levels of sensitivity, nor show increased specificity. CONCLUSION: Three-dimensional EPI with VASO contrast and 3D-GRASE with BOLD contrast both demonstrate sufficient sensitivity and specificity for laminar functional MRI to be used by neuroscientists in a wide range of investigations of depth-dependent neural circuitry in the human brain.


Assuntos
Mapeamento Encefálico , Volume Sanguíneo Cerebral , Encéfalo , Circulação Cerebrovascular , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética
4.
Vision Res ; 50(15): 1445-51, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20417656

RESUMO

PROBLEM: To investigate the independent role of spatial frequency on component motion integration. METHOD: Two Type II plaids were presented at varying spatial frequencies. The velocity vectors of the underlying components were constructed so that predicted speed and direction from the components; the Intersection of Constraints; the vector average; and distortion products, remained constant for each of the two plaids across spatial frequency. Perceived direction was measured using a method of adjustment. RESULTS: Perceived direction changed as a function of spatial frequency, approaching the pattern direction only at spatial frequencies greater than 0.5cpd. CONCLUSIONS: Spatial frequency has an independent effect on the component integration stage that determines perceived pattern motion direction. The results appear to reflect the resolution of orientation for recombination of the components at low spatial frequencies. These results have implications for motion modelling and possible clinical applications.


Assuntos
Percepção de Movimento/fisiologia , Humanos , Reconhecimento Visual de Modelos , Estimulação Luminosa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...